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Abstract

It has been demonstrated that all the known processes involved in cancer,
including apoptosis, proliferation, survival, and metastasis, are regulated by
small regulatory noncoding RNAs consisting of approximately 19-25 nu-
cleotides; these are named microRNAs (miRNAs). Both loss and gain of
miRNA function contribute to cancer development through the upregu-
lation and silencing, respectively, of different target genes. Experimental
evidence indicates that the use of miRNA mimics or anti-microRNAs may
represent a powerful therapeutic strategy to interfere with key molecular
pathways involved in cancer. This review provides insights about how micro-
RINAs act as oncogenes and tumor suppressor genes and how these findings,
along with our increasing understanding of miRINA regulation, can be ap-
plied to optimize recent miRINA-based technologies and make them suitable
for clinical applications.
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INTRODUCTION

Traditionally, the study of cancer has focused on protein-coding genes, considered the princi-
pal effectors and regulators of tumorigenesis. Recent discoveries, however, have highlighted the
role of non-protein-coding RNA in tumor formation. The story began in 1993 when Victor
Ambros and colleagues (1) discovered a gene, /in-4, that affected development in Caenorbabditis
elegans and found that its product was a small noncoding RNA; this small RNA was later to be
termed a microRINA (miRNA). The number of known small RNAs in different organisms such
as Caenorbabditis elegans, Drosophila melanogaster, plants, and mammals—including humans—has
since expanded substantially, mainly as a result of the cloning and sequencing of size-fractionated
RNAs. The human genome is predicted to encode as many as 1,000 miRNAs. miRNAs are single-
stranded RNAs (ssRNAs) ~19-25 nucleotides in length that are generated from endogenous
hairpin transcripts (2). They play an important role in the negative regulation of gene expres-
sion by base-pairing to partially complementary sites on the target messenger RINAs (mRNAs),
usually in the 3’ untranslated region (UTR). Binding of a miRNA to the target mRNA typically
leads to translational repression and exonucleolytic mRNA decay, although highly complemen-
tary targets can be cleaved endonucleolytically. miRNAs have been found to regulate more than
30% of mRNAs and have roles in fundamental processes, such as development, differentiation,
cell proliferation, apoptosis, and stress responses. Over the past few years, many miRINAs have
been implicated in various human cancers. Both loss and gain of miRNA function contribute to
cancer development through a range of different mechanisms. Because miRINAs regulate cancer
cell differentiation, proliferation, survival, and metastasis, manipulating miRINA function, either
by mimicking or inhibiting miRNAs implicated in cancer, could provide a powerful therapeutic
strategy to interfere with cancer initiation and progression. In this review, we summarize the new
discoveries about miRNAs—their functions as oncogenes, tumor suppressor genes, and drugs—
and about their potential use in the treatment of cancer.

microRNA LOCALIZATION AND BIOGENESIS

A genomic analysis of miRNAs has revealed that more than 50% of mammalian miRNAs are
located within the intronic regions of annotated protein-coding or non-protein-coding genes (3).
These miRNAs could therefore use their host gene transcripts as carriers, although it remains
possible that some are actually transcribed separately from internal promoters. Other miRNAs,
located in intergenic regions, apparently have their own transcriptional regulatory elements and
thus constitute independent transcription units. Animal miRNAs are identified as part of an 80-
nucleotide RNA with a stem-loop structure; this RNA is known as a pre-miRNA. These animal
miRNAs are included in primary miRNA precursors (pri-miRNAs) that are several hundreds or
thousands of nucleotides long. The current model for maturation of the mammalian miRINAs
is shown in Figure 1. The first step involves the transcription of the pri-miRNA mediated by
RNA polymerase II (Pol II) (4), although a minor group of miRNAs can be transcribed by RNA
polymerase III (Pol III) (5). The pri-miRNA is then processed to produce a second precursor
(pre-miRNA) of 60-100 nucleotides in length by the nuclear protein Drosha, a large protein of
~160 kDa (6) that belongs to class II of type RNase III. The Drosha protein possesses tandem
RNase III-like domains (RIIIDs) and a double-stranded RNA-binding domain (dsRBD), in ad-
dition to an extended N terminus that contains a proline-rich region and a serine/arginine-rich
region of unknown function (Figure 1). It has been proposed that Drosha may recognize the
pri-miRNA through the stem-loop structure and then cleave the stem at a fixed distance from the
loop to liberate the pre-miRNA. How is the Drosha enzyme able to discriminate the pri-miRNA

Garofalo ¢ Croce



Annu. Rev. Pharmacol. Toxicol. 2011.51:25-43. Downloaded from www.annuareviews.org

by Central College on 12/09/11. For personal use only.

stem-loop structure from the other stem-loop cellular RNAs? Both cell culture experiments and
in vitro Drosha cleavage assays have shown that proteins associated with Drosha confer speci-
ficity to this process. In fact, Drosha has been found to be part of a large, ~650-kDa protein
complex known as the Microprocessor (7), where Drosha interacts with its cofactor DGCRS (the
DiGeorge syndrome critical region gene 8 protein) in the human and interacts with Pasha in
Drosophila melanogaster (8). Drosha functions as the catalytic subunit, whereas DGCRS recognizes
the RINA substrate. After the Microprocessor nuclear activity, the produced pre-miRNA is ex-
ported to the cytoplasm by Exportin 5 (Exp5) and its Ran—guanosine triphosphate (Ran-GTP)
cofactor (9). The Exp5/Ran-GTP complex has a high affinity for pre-miRNAs, protecting them
from the moment they are generated in the nucleus until they are ready for the next cleavage
step in the cytoplasm, where GTP is hydrolyzed to guanosine diphosphate (GDP); at that point,
the Exp5/Ran-GDP complex releases its cargo. In the cytoplasm, the pre-miRNA is cleaved by
another RNase ITI-type class III enzyme, Dicer, which is a 200-kDa multidomain protein charac-
terized by different domains including an RNA helicase/ATPase domain, the DUF283 and PAZ
signatures, two neighboring RIIIDs (RIITa and RIIIb), and a dsRBD (Figure 1). The dsRBD and
RIIIDs are most certainly involved in the binding and cleavage of double-stranded RNA. Because
a pre-miRNA generated by Drosha already contains a 2-nucleotide, 3" overhang, Dicer would rec-
ognize the 3" overhang via its PAZ domain and cleave the double-stranded region approximately
20 nucleotides away, and its two RIIIDs would form a single catalytic center intramolecularly
(10). The product is a miRNA duplex containing ~2-nucleotide, 3" overhangs at both ends. Just
like DGCRS in the case of Drosha, proteins with double-stranded RNA-binding domains, such
as transactivating response RNA-binding protein (TRBP) and protein activator of protein kinase
R (PACT) in humans, bind to Dicer and contribute to Dicer function. TRBP and PACT are
not essential for Dicer-mediated cleavage of the pre-miRNA, but they facilitate it, and TRBP
stabilizes Dicer (11, 12). These proteins participate in the selection of mature miRNA strands
and/or the transfer of miRNAs to their final stop, the RNA-induced silencing complex (RISC) or
miRgonaute, which mediates the degradation or translation inhibition of mRINA’s target gene.
At the core of RISCs are Ago family proteins (13). Of the four mammalian Ago-subfamily
proteins (Agol-4), only Ago2 possesses target cleavage (slicer) activity (14). In flies, both Agol
and Ago2 have slicer activity; however, Agol is a much weaker endonuclease than Ago2 (15). The
miRNA-miRNA* duplex needs to be unwound to act as a single-stranded guide in the RISC to
recognize its target mRNAs. It was originally proposed that an ATP-dependent helicase (known
as unwindase) separates the two small RNA strands, after which the resulting single-stranded
guide is loaded into Ago proteins. However, it was later shown that Drosophila Ago2 (16) as well
as human Ago2 (17) directly receive double-stranded small RNA from the RISC-loading com-
plex. Ago2 then cleaves the passenger strand, thereby liberating the single-stranded guide to form
mature Ago2-RISC. Thus it remains unknown when (i.e., before or after RISC loading) and,
more importantly, how the two strands are separated in such slicer-independent RISC assembly
pathways. Kawamata et al. (18) showed that miRNA-miRNA* duplexes are loaded into Agol as
double-stranded RNNAs in an ATP-dependent fashion. In contrast, unwinding requires neither
ATP nor the slicer activity of Agol (18). In mammals, miRINAs guide the RISC to complemen-
tary target sites in mRINAs, where endonucleolytically active Ago proteins cleave the RNA (19)
(Figure 1). Other miRNAs, on the other hand, predominantly bind to partially complemen-
tary target sites located in the 3" UTRs of their specific target mRNAs. Imperfect base pairing
between small RNAs and their target mRINAs leads to repression of translation and/or deadeny-
lation (removal of the polyA tail of the target), followed by destabilization of the target (20). The
mechanism by which Ago proteins mediate translational repression is still a matter of debate.
Ago proteins have been shown to act on translation initiation (summarized in Reference 21), on
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elongation (22), and on the degradation of nascent polypeptides (23), depending on the target
being regulated. Several groups recently reported that, under specific conditions, miRNAs can
do just the opposite—i.e., perform translational activation of their target mRNAs. Vasudevan and
colleagues (24-26) surprisingly found that human Ago2 activates translation of target mRNAs on
cell cycle arrest caused by serum starvation or contact inhibition (24, 25), whereas it normally
represses translation of the same target mRNAs in proliferating cells (26). These new findings
add another layer of complexity to the miRNA field. Undoubtedly, further studies are needed
to understand molecular mechanisms for miRNNA-mediated translational repression or activation
and mechanisms for switching between the two processes.
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microRNAs IMPLICATED IN CANCER

A great deal of data already establishes an important role for miRNAs among the many regulatory
factors involved in the pathogenesis of cancer. The discovery of the loss of miR-154/16-1 at
chromosome 13q14 in chronic lymphocytic leukemia (27) has prompted several groups over the
past few years to study the miRINA expression profile in cancer patients. Investigators found that
miRNAs are differentially expressed not only in normal and tumor tissues (28) but also in primary
tumors and metastatic tissues (29). These differences are tumor specific and in some cases are
associated with prognosis.

microRINAs as Oncogenes

Many miRNAs have been shown to function as oncogenes in the majority of cancers profiled
to date (Table 1). miR-155 was one of the first described (30). This miRNA is encoded by
nucleotides 241-262 of BIC (B-cell integration cluster), which spans 1421 base pairs in total and
is on chromosome 21. Several groups have shown that 7iR-155 is highly expressed in pediatric
Burkitt’s lymphoma (30), Hodgkin’s disease (31), primary mediastinal non-Hodgkin’s lymphoma
(32), chronic lymphocytic leukemia (CLL) (31), acute myelogenous leukemia (AML) (33), lung
cancer (34), pancreatic cancer (35), and breast cancer (34). Our group reported that 7iR-155
transgenic mice develop acute lymphoblastic leukemia/high-grade lymphoma and that most of
these leukemias start at approximately nine months, irrespective of the mouse strain, preceded
by a polyclonal pre-B-cell proliferation. 7iR-155 downregulates Ship and ¢/EBPf, initiating
a chain of events that leads to the accumulation of large pre-B cells and acute lymphoblastic
leukemia/high-grade lymphoma.

miR-21 was one of the first miRINAs detected in the human genome (36), and it displays a
strong evolutionary conservation across a wide range of vertebrate species in mammalian, avian,
and fish clades. In Hormzo sapiens, the MIRN2I gene is located on chromosome 17, residing within
the tenth intron of the gene TMEM49 (transmembrane protein-49, also known as vacuole mem-
brane protein-1). It has been demonstrated that a primary transcript containing 7iR-21 (i.e.,
pri-miR-21) is independently transcribed from a conserved promoter that is located within the

Figure 1

microRNA biogenesis. The production of microRNAs (miRNAs) from pri-miRNA is a complex and
coordinated process operated by different groups of enzymes and associated proteins in the nucleus or
cytoplasm. The pri-miRNA, located in the nucleus, is converted in pre-miRNA through the cleavage activity
of the Drosha enzyme. The product that results from the cropping, the pre-miRNA, presents 5" phosphate
and 3’ hydroxy termini. The produced pre-miRNA is exported to the cytoplasm by the Exportin 5
(Exp5)/Ran-guanosine triphosphate (Ran-GTP) complex. Exp5 forms a nuclear heterotrimer with
Ran-GTP and pre-miRNA, which results from Drosha processing. This interaction, which is dependent on
RNA structure but independent of sequence, stabilizes the nuclear pre-miRNA and promotes the export to
the cytoplasm. After it arrives into the cytoplasm, the pre-miRNA is processed in ~18-22-nucleotide
miRNA duplexes by the cytoplasmic RNase III Dicer. Normally, one strand of this duplex is degraded,
whereas the other strand accumulates as a mature miRNA. From the miRNA-miRNA* duplex, only the
miRNA enters preferentially in the protein effector complex, formed by the RINA-induced silencing complex
(RISC) and miRgonaute. Perfect or nearly perfect complementarities between miRNA and its target 3’ UTR
induce RISC to cleave the target mRINA, whereas imperfect base matching induces mainly translational
silencing of the target. Acronyms: DGCRS8, DiGeorge syndrome critical region gene 8 protein; dsRBD,
double-stranded RINA-binding domain; ORF, open reading frame; PACT, protein activator of protein
kinase R; Pol II, RNA polymerase II; TRBP, transactivating response RNA-binding protein.
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Table 1 OncomiRs

miRNA gene Localization miRINA target Dysregulation in cancer Reference(s)
miR-155 21q21.3 Ship Upregulated in pediatric Burkitt’s 30-35, 55,89
c¢/EBPB lymphoma, Hodgkin’s disease,
Pu.l non-Hodgkin’s lymphoma, and CLL, as
Cutll well as breast, lung, colon, and pancreatic
Pcalm cancer
miR-21 17q23.1 PTEN Overexpressed in breast, lung, prostate, 36-42, 55, 56, 89,
PDCD4 gastric, cervical, head and neck, and 93,95,97
colorectal cancer, as well as glioblastoma
miR-221&222 Xpll.3 PTEN Upregulated in hepatocarcinoma, CLL, 43-50, 94
TIMP3 melanoma, and glioblastoma, as well as
p27 lung, breast, thyroid, and prostate cancer
p57
Bim
DDIT4
FOXO3A
miR-106b-93-25 cluster | 7q22.1 P21/Cip1 Overexpressed in gastric, prostate, colon, 51
Bim and pancreatic cancer, as well as
neuroblastoma and multiple myeloma
miR-17-92 cluster 13q31.3 p63 Upregulated in lung and colon cancer, as 52-54,57,58,99
E2F1 well as lymphoma, medulloblastoma, and
P21 multiple myeloma
Bim

The most upregulated microRNAs in human cancers are reported. CLL, chronic lymphocytic leukemia.

MET: hepatocyte
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TRAIL: tumor

necrosis factor-related
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ligand

HCC: hepatocellular

carcinoma
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intron of the overlapping protein-coding gene TMEM49 (37). Several studies suggest that this
miRNA is oncogenic (38-41) and that it may act as an antiapoptotic factor. In fact, antisense inhi-
bition of miR-21 caused significant apoptotic cell death in neuroepithelial cells through activation
of caspases (42). We also can mention miR-221&222, which are among the most dysregulated
miRNAs implicated in cancer. Expression of 74R-221&222 is highly upregulated in a variety of
solid tumors, including thyroid cancer (43), hepatocarcinoma (44), breast estrogen receptor nega-
tive cells (45), and melanoma cells (46). Elevated miR-221¢222 expression has been causally linked
to proliferation (47), apoptosis (48), and migration (49) of several cancer cell lines. We recently
reported that the hepatocyte growth factor receptor (MET) oncogene, through c-Jun transcrip-
tional activation, upregulates 7iR-221&222 expression, which, in turn, by targeting PTEN and
TIMP3, confers resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-
induced cell death and enhances tumorigenicity of lung and liver cancer cells (49). The results
suggest that therapeutic intervention involving the use of miRNAs should not only sensitize tumor
cells to drug-inducing apoptosis but also inhibit their survival, proliferation, and invasion. Pineau
and colleagues (50) confirmed our results by profiling miRNA expression in 104 hepatocellular
carcinoma (HCC) samples, 90 adjacent cirrhotic livers, 21 normal livers, and 35 HCC cell lines.
They found miR-221&222 to be the most upregulated miRNAs in tumor samples, enhancing cell
growth in vitro by targeting the cyclin-dependent kinase (CDK) inhibitor p27%®! and by defining
disease progression from normal liver to full-blown tumors through liver cirrhosis. The tumor
growth activity was efficiently inhibited by specific antimiR-221&222 (see below).

Finally, Pineau and colleagues (50) identified DNA damage-inducible transcript 4 (DDIT4), a
modulator of the mTor pathway, as a bona fide target of miR-221. The miR-106b-25 polycistron
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is composed of the highly conserved miR-106b, miR-93, and miR-25 that accumulate in different
types of cancer, including gastric, prostate, and pancreatic neuroendocrine tumors, as well as
neuroblastoma and multiple myeloma. These miRNAs are located in intron 13 of the host gene
MCM?7, where they are cotranscribed in the context of the MCM?7 primary transcript. Petrocca
and collaborators (51) demonstrated that miR-106-25 polycistron functions as an oncogene by
suppressing p21 and Bim. Another example of a miRNA locus with oncogenic properties is the
miR-17-92 cluster, which consists of six miRNAs: miR-17-5p, -18, -19a, -19b, -20a, and -92-1.
This cluster is located within ~1 kb of an intron of the C1307/25 locus on human chromosome
13q31, a region frequently amplified in several types of lymphoma and solid tumors (52, 53). It
has been shown that mice deficient for miR-17~92 die shortly after birth with lung hypoplasia
and a ventricular septal defect. This cluster is also essential for B cell development; its absence, in
fact, leads to increased levels of the proapoptotic protein Bim and inhibits B cell development at
the pro-B-to-pre-B transition (54). The results of these studies indicate that many miRINAs have
oncogenic activity. Importantly, their knockdown through the use of antisense oligonucleotides
inhibits the development of cancer-associated phenotypes, laying the groundwork for the creation
of miRNA-based therapies (55, 56, 57, 58).

microRNAs as Tumor Suppressor Genes

miR-15 and -16 were the first to establish the link between miRNAs and cancer (27)
(Table 2). They are transcribed as a cluster (72iR-15a-miR-16-1) that resides in the 13q14 chro-
mosomal region. Deletions or point mutations in region 13q14 occur at high frequency in CLL,
lymphoma, and several solid tumors (59). Their expression is inversely correlated to BCL2 ex-
pression in CLL (60). The tumor suppressor function of 7iR-154/16-1 has also been addressed
in vivo. In immunocompromised nude mice, ectopic expression of 7iR-154/16-1 was found to
cause dramatic suppression of tumorigenicity of MEG-01 leukemic cells that exhibited a loss

Table 2 Tumor suppressor miRINAs

miRNA gene Localization miRNA target Dysregulation in cancer Reference(s)
miR-15/16 21q21.3 Bcl-2 Downregulated in CLL, DLBCL, multiple 27,59-63
CCND1 myeloma, pituitary adenoma, prostate cancer,
WNT3A and pancreatic cancer
let-7 17q23.1 Ras Downmodulated in liposarcoma and CLL, as 64-66, 76
Myc well as gastric, lung, prostate, breast, ovarian,
HMGA2 and colon tumors
miR-34a/b/c Xpll.3 CCNE2 Downregulated in pancreatic cancer and 67-70
MET Burkitt’s lymphoma without Myc translocation
Bcl2 Hypermethylated in colon tumors
MycN
Notch1/Notch2
CDK4/6
miR-29 7q22.1 Mcl-1 Downmodulated in CLL and 71,72, 74
CDC42 cholangiocarcinoma, as well as colon, breast,
and lung cancer
miR-122 13g31.3 ADAM17 Downregulated in HCC 73

The most downregulated microRNAs in human cancers are reported.
Abbreviations: CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B cell lymphoma; HCC, hepatocellular carcinoma.
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of endogenous expression of miR-154/16-1. Recently, Bonci et al. (61) reported that the 7zR-
15a-miR-16-1 cluster targets not only BCL2 but also CCNDI (encoding cyclin D1) and WNT3A4
mRNA, which promote several prostate tumorigenic features, including survival, proliferation,
and invasion. Together, these data suggest that 7iR-154/16-1 genes are natural antisense interac-
tors of BCL2 and probably other oncogenes and that they can be used to suppress tumor growth
in therapeutic application for a variety of tumors. Ongoing clinical trials are assessing the thera-
peutic potential of antisense oligonucleotides targeting BCL2 gene expression in prostate cancer
(62). The reintroduction of 7iR-15a—miR-16 could be theoretically more effective, due to the
simultaneous inhibition of BCL2, CCND1, WNT3A, and other possible targets, such as MCL-1,
involved in cancer cell proliferation and resistance to apoptosis. Recently, Klein et al. (63) gen-
erated transgenic mice with a deletion of the #2iR-152-miR-16-1 cluster, causing development of
indolent B-cell-autonomous, clonal lymphoproliferative disorders, recapitulating the spectrum of
CLL-associated phenotypes observed in humans.

An inverse correlation exists between /fez-7 and RAS in lung tumors; this provides a possible
mechanism for let-7 in cancer (64) (Table 2). In 2005, Johnson and collaborators (64) reported that
the loss of Jet-7 family members resulted in the constitutive overexpression of RAS, an oncogene
that contributes to the pathogenesis of several types of human tumors. Moreover, Sampson et al.
(65) found that overexpression of lez-7a decreased Myc mRNA and protein in lymphoma cells,
suggesting that dysregulation of this miRNA participates in the genesis and maintenance of the
lymphoma phenotype in Burkitt’s lymphoma cells and other Myc-dysregulated cancers. Jet-7 was
also found to target the high-mobility group AT-hook 2 (HMGA?2), a gene that is dysregulated
in various human tumors, including liposarcoma (66).

The miRNA-34 family comprises three members: miRNA-34a, which is generated from a
larger transcriptional unit on chromosome 1p36; and miR-34b and miR-34c, both of which are
generated through the processing of a bicistronic transcript from chromosome 11q23 (termed
miR-34bc) (Table 2). To identify miRNA components of tumor suppressor pathways, He et al.
(67) compared miRINA expression profiles of wild-type and p53-deficient cells and found that
miR-34a—c expression reflected p53 status. They validated different miR-34 targets as cyclin E2
(CCNE2), CDK4, and MET. Silencing these selected miR-34 targets through the use of small
interfering RNAs (siRINAs) led to a substantial arrest in G1. Conversely, ectopic miR-34 delivery
caused a decrease in levels of phosphorylated retinoblastoma gene product (Rb), consistent with
lowered activity of both CDK4 and CCNE2 complexes. BCL2 and MYCN were identified as
miR-34a targets and likely mediators of the tumor suppressor phenotypic effect in neuroblastoma
(68). Another group reported that Notch1, Notch2, and CDK6 are downregulated by miR-34a in
glioma cells (69). The miR-34 family members have also been identified as promising prognostic
markers in non-small-cell lung cancer (NSCLC); the family is downmodulated in tumors com-
pared with normal tissue. Restoration of miR-34 expression in the pancreatic cancer cells by either
transfection of miR-34 mimics or infection with lentivirus significantly inhibited clonogenic cell
growth and invasion, induced apoptosis and G1 and G2/M arrest in the cell cycle, and sensitized
the cells to chemotherapy and radiation (70). Mott et al. (71) reported that miR-29, highly ex-
pressed in cholangiocytes and downregulated in malignant cells, is an endogenous regulator of
Mcl-1 protein expression, and therefore apoptosis. It has been demonstrated that miR-29 family
members (miR-29a, miR-29b, and miR-29¢) directly suppress p85 alpha (the regulatory subunit of
phosphoinositide 3-kinase) and CDC42 (a Rho family GTPase), both of which negatively regulate
p53, and that they induce apoptosis in a p53-dependent manner (72) (Table 2). Tsai etal. (73) re-
ported that liver-specific miR-122 is significantly downregulated in liver cancers with intrahepatic
metastasis and that it negatively regulates tumorigenesis. Restoration of miR-122 in metastatic
cells significantly reduced in vitro migration, invasion, and anchorage-independent growth as well
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as in vivo tumorigenesis, angiogenesis, and intrahepatic metastasis in an orthotopic liver cancer
model. Moreover, they found that ADAM17 (a disintegrin and metalloprotease 17) was involved
in metastasis as a target of miR-122 (Table 2).

microRNAs AND THERAPY

We are seeing the emergence of new technologies that utilize synthetic miRNAs or artificial
target sites to exploit or inhibit endogenous miRINA regulation. Therapeutic strategies based
on modulation of miRNA expression hold great promise owing to the ability of these small
RINAs to regulate cellular behavior. The most promising therapeutic techniques tested to date are
(#) miRNA mimics and (/) anti-miRNA oligonucleotides (AMOs).

microRNA MIMICS

Because the loss of a miRNA inhibitory effect contributes to oncogene activation, it could be
possible to inhibit the expression of dysregulated oncogenes by using synthetic miRNA mimics.
Many studies have already demonstrated how this approach works in vitro. Recently, Garzon et al.
(74) found that enforced expression of miR-29a and -29b in AML cell lines and in primary AML
blasts inhibited cell growth and induced apoptosis in vitro and in vivo through the downregulation
of the Mcl-1 protein. The data support a tumor suppressor role for miR-29 and provide a rationale
for the use of synthetic miR-29b oligonucleotides as a novel strategy to improve treatment response
in AML. Furuta etal. (75) showed that7iR-124 and miR-203 genes are hypermethylated in HCC.
Restoration of miR-124 or miR-203 expression by miRNA mimics significantly reduced cell
proliferation in all the HCC cell lines tested. Protein levels of CDK6, SET and MYND domain
containing 3 (SMYD3), vimentin (VIM), and IQ motif containing GTPase activating protein 1
(IQGAP1) were reduced in miR-124 transfectants compared with their control counterparts. In
miR-203 transfectants, the protein level of ATP-binding cassette, subfamily E, member 1 (ABCE1)
and the protein level of CDK6 were decreased compared with that in the control transfectants
(75). The disadvantages of this approach are that miRINA-mimic oligonucleotides have only a
transient effect, they are not stable, and they may require repeated deliveries.

Another technique uses vector-based miRNA expression to produce stable expressed miRINAs.
Takamizawa et al. (76) introduced Jez-7 into a lung cancer cell line by using expression constructs,
which were designed to synthesize the mature miRNAs of two predominant /ez-7 isoforms, let-7a
and Jet-7f, under the control of the Pol III HI-RNA gene promoter. Overexpression of /ez-7f in
the A549 lung adenocarcinoma cell line resulted in a 78.6% reduction in the number of colonies,
whereas the introduction of /ez-74 showed a similar but more modest growth-inhibitory effect
(76). They demonstrated, for the first time, that the expression levels of the /ez-7 family were
significantly downregulated in lung cancers both in vitro and in vivo. Also, plasmids with Pol II
promoters offer flexibility in regulating the production of miRNAs in cultured cells or in vivo.
Expression simply requires the insertion of the entire predicted miRNA precursor stem-loop struc-
ture into the expression vector at an arbitrary location. Moreover, although the plasmids express
only a single miRNA, the fact that Drosha cleavage independently excises each miRNA stem-loop
precursor from the primary transcript to give rise to a pre-miRNA suggests that Drosha cleavage
should be able to simultaneously express several artificial or authentic miRNAs by a tandem array
on a precursor RNA transcript (77). McLaughlin et al. (78) designed 10 miRNA mimics directed
against several sites within the ABL gene coding sequences using the BLOCK- iT™ Pol I miR
RINAi Expression Vector from Invitrogen. In fact, a reciprocal translocation between chromo-
somes 9 and 22 results in chimeric Ber-Abl gene expression, a specific chromosomal abnormality
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that is associated with chronic myelogenous leukemia (CML). For comparison, they used a short
hairpin RNA (shRNA) against the Ber-Abl junction. The degree of suppression by the 10 miRNA
constructs varied widely but had the same efficiency (90%) compared with the junction-specific
shRNA. One of the miRNA constructs was remarkably efficient: It blocked Ber-Abl protein pro-
duction by ~99%, indicating greater effectiveness than the use of the Ber-Abl tyrosine kinase
inhibitor imatinib or related drugs. In addition, alternative chromosomal partners, such as 7Te/,
can participate with A5/ in the formation of chimeric oncogenes such as Te/-Abl. Moreover, many
imatinib-resistant forms of Ber-Abl present mutations at Thr-315. To evaluate the generality of
the utility of Abl-directed miRNNAs, McLaughlin et al. compared the ability of selected forms to
suppress these alternative members of the Abl oncogene family and demonstrated that each could
be effectively suppressed through the targeting of Abl sequences (78).

Liang et al. (79) reported another study on the miR-155-based BLOCK- iT Pol II miR RNAi
Expression Vector from Invitrogen. They used this construct to silence CXCR4 in MDA-231 cells.
CXCR4 interacts with SDF-1, inducing the phosphorylation of Akt. Ctrl-miRNA-transfected
MDA-MB-231 cells expressed high levels of CXCR#4 protein. Conversely, phosphorylation of
Akt in MDA-MB-231 cells transfected with CXCR4 miRNA cannot be induced even at 30 min
after SDF-1 addition because the expression of CXCR4 was silenced completely with the CXCR4
miRNA. Taken together, the data suggest that artificial miRINA may potentially be a therapeutic
agent for breast cancer metastasis (79). Chung and colleagues (80) described a new Pol II vector
system for RINAI, the SIBR (synthetic inhibitory BIC-derived RINA) vectors, based on BIC, the
primary transcript for the miR-155 miRNA. The stem-loop precursor for the mouse miR-155
miRNA is located within the third exon of the mouse BIC gene that is an evolutionarily con-
served noncoding RNA. The ability to express functional BIC (and presumably miR-155) from
a heterologous Pol II promoter in a retroviral vector suggested that BIC/miR-155 might be a
good sequence framework for construction of Pol II-based RINAi vectors. The replacement of the
miR-155 precursor stem loop with other synthetic miRNA (i.e., siRNA) allows these vectors to
provide effective inhibition of different targets in mammalian cells. miR-155-based SIBR vectors
provide similar levels of inhibition to Pol ITII shRNA vectors, but, unlike the Pol III shRNA vectors,
SIBR vectors can be used to express multiple miRNA expression cassettes from a single transcript
(80). Although significant focus in the area of miRNAs and therapy has been directed toward
antisense-mediated inhibition of tumorigenic and antiapoptotic miRNAs (81), several studies indi-
cate thatmiRNA replacementrepresents an equally viable, if not more efficacious, strategy. Vector-
based miRINA expression, which produces stable expressed miRNAs, can inhibit endogenous
oncogene expression; this capability demonstrates the efficiency of miRNAs as therapeutic tools.

Numerous preclinical studies have demonstrated the efficacy of recombinant adeno-associated
virus (rAAV) gene delivery vectors, and recent clinical trials have shown promising results. How-
ever, the efficiency of these vectors is hindered by the need to convert the single-stranded DNA
(ssDNA) genome into double-stranded DNA (dsDNA) before expression. This critical step can
be effectively bypassed through the use of self-complementary AAV (scAAV) vectors. AAV is a
linear ssDNA molecule with dsDNA hairpin structures at each end; these function as replica-
tion origins for the synthesis of a complementary strand. Kota and collaborators (82) tested the
hypothesis whether miRINAs and scAAV vectors could be used as general anticancer therapeu-
tics. They found that miR-26a is abundantly expressed in normal liver and downregulated in
human and murine liver tumors. Furthermore, it directly downregulates cyclins D2 and E2, in-
ducing G1 arrest in human cancer cells in vitro. To assess the therapeutic efficacy of this miRINA,
they constructed a scAAV vector system, which included enhanced green fluorescent protein
(eGFP) driven by the ubiquitously expressed elongation factor 1 alpha (EFlx). scAAV.eGFP
and scAAV.miR-26a.eGFP were packaged with the AAV8 serotype for in vivo delivery and were
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administered with a single tail-vein injection in mice with established liver tumors. Mice transduced
with scAAV8.miR-26a.eGFP presented high expression levels of miR-26a in the liver. Importantly,
scAAV8.miR-26a.eGFP administration did not cause the inhibition of the miRNA pathway as
previously reported with the delivery of stRNA (82). Moreover, no inflammation, fibrosis, or his-
tologic evidence of toxicity was observed, which demonstrates that scAAV8 provides a nontoxic
tool to deliver miRNAs to the liver. This is an important point because the use of AAV?2 for in vivo
therapy is limited by early immunologic memory of AAV infections (83). Most importantly, 6 out
of 8 mice treated with control virus developed tumors, and 8 of 10 sScAAV8.miR-26a.e GFP-treated
animals exhibited only small tumors or a complete absence of tumors. Intriguingly, the remain-
ing 2 of the 10 scAAV8.miR-26a.eGFP-treated mice presented significantly lower transduction
efficiency than the successfully treated animals. This important study highlights the therapeutic
promise of this approach. Many other miRNAs with therapeutic potential remain to be function-
ally characterized, so there clearly remains significant work to be done. The experiments have
been performed in liver that is well suited for such alternative strategies—i.e., it is easily targeted
by viral genes, nonviral genes, and small-molecule delivery systems (84)—but the liver is not the
only organ where the AAV vectors could be used. Direct injection into muscle results in high local
concentrations of vector at the injection site. There have been numerous reports of long-term
expression in the adult central nervous system from AAV vectors. Injection of vector into the
ventricular space can achieve a much broader distribution of central nervous system transduction
because of the diffusion in the cerebral spinal fluid. The retina is an attractive application for
AAV gene therapy for several reasons, including small volume and low dose requirements (85).
AAV vectors have also been shown to stably integrate in long-term-regenerating cell populations
within bone marrow (86). Thus AAV vectors are currently used in many gene transfer applica-
tions; however, the respiratory epithelium remains a challenging target. Recently, Fein et al. (87)
synthesized two cationic sterol-based lipids, dexamethasone-spermine and disubstituted spermine,
for pulmonary gene targeting. When the AAV vectors were formulated with these cationic lipids,
the transduction efficiency in cultured A549 cells increased by sevenfold and sixfold, respectively.
Intranasal administration of 10'! genome copies of AAV2/9 and AAV2/6.2 coformulated with lipid
formulations resulted in an average fourfold increase in transgene expression for both vectors (87).

ANTI-microRNAs
2'-0-Methyl Anti-microRNA Oligonucleotides

The 2'-O-methyl (2’-OMe) group is one of the oldest, simplest, and most often used modifications
to oligonucleotides. The methyl group contributes a limited amount of nuclease resistance and
improves binding affinity to RNA compared with unmodified sequences. Lee et al. (88) used 2'-O-
methyl antisense oligonucleotide to knock down miR-125b in PC-3 (prostate cancer) and HeLa
(cervical cancer) cells. They observed a reduction in cell proliferation in both cell lines. A library
of 2'-O-methyl anti-microRNA oligonucleotide (OMe-AMO) inhibitors in functional screening
assays was used to identify miRINAs that affect cell proliferation and apoptosis. They validated
the efficacy of the miRNA inhibitors using a luciferase reporter bearing miRINA target sequences
cloned into its 3" UTR (89). Despite the successful knockdown of a miRNA in vitro and in vivo,
2-O-methyl antisense oligonucleotide has several limitations. First, a direct measurement of the
depletion of miRNAs is difficult, because miRNAs bind to the miRNA and sequester it from its
target rather than induce its degradation. Therefore, the only possible method to confirm the
decrease in number of miRNAs is to measure the level of expression of a reporter gene containing
the target sequence of the miRNA. In addition, adding back miRNA in the presence of the
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2'-O-methyl antisense oligonucleotide cannot rescue the knockdown phenotype. Taking into
account that each miRNA could have more than hundred target mRNAs in the cell, this multitarget
regulation might be responsible for adverse or nontarget effects in a future miRNA-mediated
therapy (see below).

2'-0-Methoxyethyl Anti-microRNA Oligonucleotides

2'-0O-methoxyethyl (2’-MOE)-modified oligonucleotides have higher affinity and specificity to
RINA than their OMe analogs. Esau et al. (90) inhibited a panel of 86 miRNAs in preadipocytes
using 2’-O-methoxyethyl anti-microRNA oligonucleotides (MOE-AMOs) and evaluated the effect
on adipocyte differentiation. The comparison of the miRNA expression profile in differentiated
versus nondifferentiated adipocytes showed that a miRNA, miR-143, was found to be involved in
the differentiation process through the regulation of the ERKS protein. Treatment of adipocytes
with a MOE-AMO complementary to miR-143 effectively inhibited this process, as compared
with the cells transfected with the miRINA negative control (90).

The Locked Nucleic Acid Antisense Oligonucleotides

The success of siRNA as a potent and specific inhibitor of gene expression in vitro has fueled
the interest for in vivo applications of siRNA as a genetic therapeutic. The therapeutic efficacy
of siRNAs depends on their ability to migrate through the body and reach diseased organs in
therapeutically relevant levels. Serum nuclease degradation, inadequate organ distribution, and a
high level of off-target effects have limited the development of siRNA therapeutics. The half-life of
unmodified siRNAs in vivo is in the range of minutes, but chemical modifications can significantly
improve this range without a major loss of silencing activity (91). A locked nucleic acid (LNA) is
an oligonucleotide that contains conformationally locked nucleotide monomers with a methylene
bridge connecting the 2’-oxygen and 4'-carbon atoms of the ribose ring. Incorporation of LNA
monomers into oligonucleotides and siRNNA constructs has been shown to increase the nuclease
resistance significantly, stabilize the duplex structure, and improve mismatch discrimination (92).
LNA is substantially compatible with the siRNA machinery, and it reduces sequence-related off-
target effects either by lowering incorporation of the siRNA sense strand and/or by reducing the
ability of inappropriately loaded sense strands to cleave the target RNA. The application of 2'-O-
methyl- and/or DNA/LNA-mixed oligonucleotides to specifically inhibit miR-21 in glioblastoma
and breast cancer cells suppressed cell growth and enhanced caspase activation in vitro (39, 93).
Recently, Pineau etal. (50) identified DNA damage-inducible transcript 4 (DDIT4), a modula-
tor of the mT'or pathway, as a bona fide target of miR-221. They introduced into liver cancer cells,
by lipofection, LNA-modified oligonucleotides specifically designed for miR-221 (antimiR-221)
and miR-222 (antimiR-222) knockdown. Treatment by antagomiRs, but not scrambled oligonu-
cleotide, reduced cell growth in liver cancer cell lines that overexpressed miR-221 and miR-222
by 35% and 22%, respectively. When introduced in combination, antimiR-221 and -222 did not
increase growth inhibition, which suggests that a saturation threshold is reached in the four cell
lines by a single antagomiR. Thus the use of synthetic inhibitors of miR-221 may prove to be
a promising approach to liver cancer treatment (50). Galardi et al. (94) showed that miR-221
and miR-222 knockdown through antisense LNA oligonucleotides increases p27XP! in human
prostate cancer (PC3) cells and strongly reduces their clonogenicity in vitro. Corsten et al. (95)
found that silencing miR-21 using locked-nucleic-acid-modified oligonucleotide (LNA-antimiR)
molecules in glioma cells followed by TRAIL treatments increased caspase activity in vitro and
reduced tumor growth in vivo. Despite recent progress in silencing of miRINAs in rodents, the
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development of effective and safe approaches for sequence-specific antagonism of miRNAs in vivo
remains a significant scientific and therapeutic challenge. Recently, Elmén and collaborators (96)
showed for the first time that the simple systemic delivery of an unconjugated, PBS-formulated
LNA-antimiR effectively antagonizes the liver-expressed miR-122 in nonhuman primates. Ad-
ministration by intravenous injections of LNA-antimiR into African green monkeys resulted in
the formation of stable heteroduplexes between the LNA-antimiR and miR-122, accompanied by
depletion of mature miR-122 and dose-dependent lowering of plasma cholesterol. These findings
demonstrate the utility of systemically administered LNA-antimiRs in exploring miRNA func-
tion in primates and show the impressive potential of this strategy to overcome a major hurdle for
clinical miRNA therapy (96).

microRNA Decoy or Sponge

A number of groups have shown that vectors expressing miRNA target sites can be used to
saturate an endogenous miRNA, preventing the downregulation of its natural target. This tech-
nology, which has been defined with different names [decoy (97), sponge (98), eraser (99), and
antagomiR (100)], utilizes different gene delivery systems, including plasmids and vectors based
on adenoviruses, retroviruses, and lentiviruses. Overexpression of a miRNA target can be achieved
through the use of high vector copy, strong promoters, or stable transcript. The sponge strategy
fills the gaps of the antagomiR approach in different ways. First, genetic knockout of miRNA is a
powerful tool to identify its function, but knockouts are limited to studies in mice and take time.
Second, up to 40% of miRNA genes are located in protein-coding genes, and this might create
an artifact. Third, this strategy makes it possible to silence the effect of an entire miRNA family
through a single member because family members have the same seed sequence. Finally, unlike
oligonucleotide-based miRINA knockdown, the decoy vectors, mainly when based on lentiviral
vectors, can stably antagonize a miRNA without requiring multiple administrations (101). Re-
cently, Valastyan et al. (102) deployed a stable miRNA sponge strategy to inhibit miR-31 in vivo
in noninvasive MCF7-Ras cells using retroviral miRNA sponges that carried miR-31 recognition
motifs in their 3" UTRs. The miR-31 sponge reduced miR-31 function by a factor of 2.5 but did
not affect the activity of other known antimetastatic miRNAs. This approach allowed the other-
wise nonaggressive breast cancer cell to metastasize. However, the decoy vector technology has
its limitations. The overexpression of the target genes could be toxic for the cells and is not always
achieved in some cells and tissue types. Moreover, it is difficult to determine the degree of miRNA
inhibition mediated by a sponge vector, so genetic knockouts are still required to guarantee a
complete loss of miRNA activity.

CONCLUSIONS

Targeted molecular therapeutics based on miRNAs hold great promise for the development of
less toxic and more effective personalized treatment strategies for cancer. This approach requires
a deeper understanding of the molecular changes that drive tumor formation and also requires
development of therapeutic agents that specifically inhibit the genes and pathways activated by
these changes. Many, if not all, of the miRNAs highlighted in this review may very well play
important roles in the development of novel cancer treatment strategies. miRNAs constitutively
dysregulated in cancer represent optimal miRNA-therapy targets. The field of small RNAs is
rapidly advancing toward in vivo delivery for therapeutic purposes. Advanced molecular therapies
aimed at downmodulating (96) or upmodulating the level of a given miRNA in model organisms
have been successfully established (82) (Figure 2). In theory, if the activation of an oncogene
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da: microRNAs (miRNAs) as therapeutics. (#) The miRNA mimic technology is an innovative approach for gene silencing. This approach
5 uses synthetic miRNAs that, once introduced into cells, mimic endogenous miRNAs, bind specifically to their target genes, and
- produce posttranscriptional repression—more specifically, translational inhibition—of the genes. () Sponges are ectopically expressed

mRNAs that contain multiple miRNA target sites (white). These target sites compete miRNAs away from their natural mRNA targets.
miRNA sponges are suitable for use in a variety of experimental systems, including cultured cells and transgenic animals.

(¢) Knockdown of oncomiRs through anti-microRNA oligonucleotides (2'-O-methyl anti-microRNA oligonucleotides,
2/-O-methoxyethyl anti-microRNA oligonucleotides, and locked nucleic acid antisense oligonucleotides) leads to the upregulation of
tumor suppressor proteins, inducing apoptosis and blocking tumor formation in vitro and in vivo.

promotes tumor growth and spread, then the ability to specifically reduce oncogene expression
may slow cancer growth. The discovery of small RNAs and their functions has revitalized the
prospect of controlling expression of specific genes in vivo, with the ultimate hope of building a
new class of gene-specific medical therapies. miRINAs have been shown to target the expression
of important cancer-related genes without associated toxicities or histopathological changes in
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animals. Precise delivery to the cancer cell may be needed to avoid unwanted miRNA effects that
could result from targeting important genes in other healthy tissues.

In addition, miRNA has several targets, and different genes can be regulated by several
miRNAs, so this multitarget modulation might be responsible for adverse or nontarget effects. In
this regard, Xiao et al. (101) have already suggested two promising approaches—a gene-specific
miRNA mimic approach and a miRNA-masking antisense approach—to explore the possibility
of using miRNA’s mechanism of action in a gene-specific manner. Specifically, they showed that
gene-specific miRNA mimics of 22 nucleotides, designed on the miR-1 and miR-133 target sites
in the 3’ UTRs of HCN2 and HCN4 cardiac channels, were efficient in abrogating expression and
function of these two proteins without affecting the proteins’ transcript levels; thus they eliminated
the possible miR-1 and miR-133 multitarget effects. Meanwhile, the miRINA-masking antisense
oligonucleotides, designed on the miR-1 and miR-133 target sites in the 3’ UTRs of HCN2 and
HCN4, hybridized with the target mRINA to mask the miRNA binding sites and block the action
of miR-1 and miR-133. This mechanism enhanced HCN2/HCN4 expression and function (101).
Promising miRNA formulations should be further evaluated by detailed pharmacokinetics and
pharmacodynamics studies in animal models. In conclusion, the latest findings discussed in this
review indicate that miRNAs could become powerful therapeutic tools in the near future.
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